Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 107(14): 4507-4518, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37272938

RESUMO

Formate is a promising energy carrier that could be used to transport renewable electricity. Some acetogenic bacteria, such as Eubacterium limosum, have the native ability to utilise formate as a sole substrate for growth, which has sparked interest in the biotechnology industry. However, formatotrophic metabolism in E. limosum is poorly understood, and a system-level characterisation in continuous cultures is yet to be reported. Here, we present the first steady-state dataset for E. limosum formatotrophic growth. At a defined dilution rate of 0.4 d-1, there was a high specific uptake rate of formate (280 ± 56 mmol/gDCW/d; gDCW = gramme dry cell weight); however, most carbon went to CO2 (150 ± 11 mmol/gDCW/d). Compared to methylotrophic growth, protein differential expression data and intracellular metabolomics revealed several key features of formate metabolism. Upregulation of phosphotransacetylase (Pta) appears to be a futile attempt of cells to produce acetate as the major product. Instead, a cellular energy limitation resulted in the accumulation of intracellular pyruvate and upregulation of pyruvate formate ligase (Pfl) to convert formate to pyruvate. Therefore, metabolism is controlled, at least partially, at the protein expression level, an unusual feature for an acetogen. We anticipate that formate could be an important one-carbon substrate for acetogens to produce chemicals rich in pyruvate, a metabolite generally in low abundance during syngas growth. KEY POINTS: First Eubacterium limosum steady-state formatotrophic growth omics dataset High formate specific uptake rate, however carbon dioxide was the major product Formate may be the cause of intracellular stress and biofilm formation.


Assuntos
Acetatos , Eubacterium , Acetatos/metabolismo , Eubacterium/genética , Eubacterium/metabolismo , Piruvatos/metabolismo , Formiatos/metabolismo
2.
Synth Biol (Oxf) ; 6(1): ysab008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928195

RESUMO

Gas fermentation by Clostridium autoethanogenum is a commercial process for the sustainable biomanufacturing of fuels and valuable chemicals using abundant, low-cost C1 feedstocks (CO and CO2) from sources such as inedible biomass, unsorted and nonrecyclable municipal solid waste, and industrial emissions. Efforts toward pathway engineering and elucidation of gene function in this microbe have been limited by a lack of genetic tools to control gene expression and arduous genome engineering methods. To increase the pace of progress, here we developed an inducible CRISPR interference (CRISPRi) system for C. autoethanogenum and applied that system toward transcriptional repression of genes with ostensibly crucial functions in metabolism.

3.
Genes (Basel) ; 11(10)2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977700

RESUMO

Propionibacteria have been studied extensively since the early 1930s due to their relevance to industry and importance as human pathogens. Still, their unique metabolism is far from fully understood. This is partly due to their signature high GC content, which has previously hampered the acquisition of quality sequence data, the accurate annotation of the available genomes, and the functional characterization of genes. The recent completion of the genome sequences for several species has led researchers to reassess the taxonomical classification of the genus Propionibacterium, which has been divided into several new genres. Such data also enable a comparative genomic approach to annotation and provide a new opportunity to revisit our understanding of their metabolism. Using pan-genome analysis combined with the reconstruction of the first high-quality Propionibacterium genome-scale metabolic model and a pan-metabolic model of current and former members of the genus Propionibacterium, we demonstrate that despite sharing unique metabolic traits, these organisms have an unexpected diversity in central carbon metabolism and a hidden layer of metabolic complexity. This combined approach gave us new insights into the evolution of Propionibacterium metabolism and led us to propose a novel, putative ferredoxin-linked energy conservation strategy. The pan-genomic approach highlighted key differences in Propionibacterium metabolism that reflect adaptation to their environment. Results were mathematically captured in genome-scale metabolic reconstructions that can be used to further explore metabolism using metabolic modeling techniques. Overall, the data provide a platform to explore Propionibacterium metabolism and a tool for the rational design of strains.


Assuntos
Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/genética , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Redes e Vias Metabólicas , Propionibacterium/metabolismo , Proteínas de Bactérias/genética , Composição de Bases , Mapeamento Cromossômico , DNA Bacteriano/análise , Humanos , Filogenia , Propionibacterium/classificação , Propionibacterium/genética , Propionibacterium/crescimento & desenvolvimento
4.
Metabolites ; 10(6)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492827

RESUMO

Polyketides are a remarkable class of natural products with diverse functional and structural diversity. The class includes many medicinally important molecules with antiviral, antimicrobial, antifungal and anticancer properties. Native bacterial, fungal and plant hosts are often difficult to cultivate and coax into producing the desired product. As a result, Escherichia coli has been used for the heterologous production of polyketides, with the production of 6-deoxyerythronolide B (6-dEB) being the first example. Current strategies for production in E. coli require feeding of exogenous propionate as a source for the precursors propionyl-CoA and S-methylmalonyl-CoA. Here, we show that heterologous polyketide production is possible from glucose as the sole carbon source. The heterologous expression of eight genes from the Wood-Werkman cycle found in Propionibacteria, in combination with expression of the 6-dEB synthases DEBS1, DEBS2 and DEBS3 resulted in 6-dEB formation from glucose as the sole carbon source. Our results show that the Wood-Werkman cycle provides the required propionyl-CoA and the extender unit S-methylmalonyl-CoA to produce up to 0.81 mg/L of 6-dEB in a chemically defined media.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...